N9030B PXA X-Series Signal Analyzer, Multi-touch

2 Hz to 3.6, 8.4, 13.6, 26.5, 44, or 50 GHz

DATA SHEET

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2s) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

The analyzer will meet its specifications when:

- The analyzer is within its calibration cycle.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies < 10 MHz, DC coupling applied.
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range but outside the allowed operating range.
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.

The term "mixer level" is used as a condition for many specifications in this document. This term is a conceptual quantity that is defined as follows: Mixer Level (dBm) = RF Input Power Level (dBm) - (Electronic + Mechanical) Attenuation (dBm).

Accelerate signal insight with outstanding all-around signal analysis

The PXA is the benchmark for performance that accelerates innovation in demanding applications. With measurement options that range from excellent to exceptional, the PXA puts you in the lead.

Analyze the latest signals with up to 510 MHz analysis bandwidth and better than 78 dBc SFDR, and reveal previously hidden signals with Noise Floor Extension (NFE). To see your device's true behavior, get industry-leading phase noise performance by adding the Keysight-proprietary DDS-based LO.

Simplify migration from legacy Agilent/HP spectrum analyzers with backward code compatibility and compact 4U form-factor

Frequency and Time Specifications

Frequency rangeDC coupledAC coupledOption 5032 Hz to 3.6 GHz10 MHz to 3.6 GHzOption 5032 Hz to 8.4 GHz10 MHz to 8.4 GHzOption 5132 Hz to 13.6 GHz10 MHz to 8.4 GHzOption 5262 Hz to 26.5 GHz10 MHz to 26.5 GHzOption 5502 Hz to 50 GHzNABandL0 multiple (N)0012 Hz to 3.6 GHz113.5 to 8.4 GHz228.3 to 13.6 GHz3213.5 to 17.1 GHz4417 to 26.5 GHz5426.4 to 34.5 GHz6834.4 to 50 GHz7Precision frequency referenceAccuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]Aging rate \pm 1.5 x 10 ⁻⁷ / year \pm 1.5 x 10 ⁻⁸ \pm x 10 ⁻⁹ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁸ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁹ Achievable initial calibration accuracy \pm 1.5 x 10 ⁻⁷ Deadward EM <t< th=""><th></th></t<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c } \hline \label{eq:product} \hline \end{center} \hline \hline \end{center} \hline \end{center} \hline \end{center} \hline \end{center} \hline \end{center} \hline \end{center} \hline \hline \end{center} \hline $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Option 550 2 Hz to 50 GHz NA Band LO multiple (N) NA 0 1 2 Hz to 3.6 GHz 1 1 1 3.5 to 8.4 GHz 1 2 2 8.3 to 13.6 GHz 1 3 2 13.5 to 17.1 GHz 1 4 4 17 to 26.5 GHz 1 5 4 26.4 to 34.5 GHz 1 6 8 34.4 to 50 GHz 1 Precision frequency reference Accuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] Aging rate \pm 1 x 10 ⁻⁷ / year \pm 1 x 10 ⁻⁷ / years Temperature stability - 20 to 30 °C \pm 1.5 x 10 ⁻⁸ - Full temperature range \pm 5 x 10 ⁻⁸ - Full temperature range \pm 5 x 10 ⁻⁸ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁸ Example frequency reference accuracy \pm (1 x 1 x 10 ⁻⁷ + 1.5 x 10 ⁻⁸ + 4 x 10 ⁻⁸) 1 year after last adjustment 20 to 30 °C $= \pm$ 1.55 x 10 ⁻⁷	
Band LO multiple (N) 0 1 2 Hz to 3.6 GHz 1 1 3.5 to 8.4 GHz 2 2 8.3 to 13.6 GHz 3 2 13.5 to 7.1 GHz 4 4 17 to 26.5 GHz 5 4 26.4 to 34.5 GHz 6 8 34.4 to 50 GHz Precision frequency reference 4 Accuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] Aging rate \pm 1 x 10 ⁻⁷ / year \pm 1.5 x 10 ⁻⁸ \pm 1.5 x 10 ⁻⁸ - 20 to 30 °C \pm 1.5 x 10 ⁻⁸ - Full temperature range \pm 5 x 10 ⁻⁸ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁸ Example frequency reference accuracy \pm (1 x 1 x 10 ⁻⁷ + 1.5 x 10 ⁻⁸ + 4 x 10 ⁻⁸) 1 year after last adjustment 20 to 30 °C $=$ ± 1.55 x 10 ⁻⁷	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3213.5 to 17.1 GHz4417 to 26.5 GHz5426.4 to 34.5 GHz6834.4 to 50 GHzPrecision frequency referenceAccuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]Aging rate \pm 1 x 10 ⁻⁷ / year \pm 1.5 x 10 ⁻⁷ / 2 yearsTemperature stability- 20 to 30 °C \pm 1.5 x 10 ⁻⁸ - Full temperature range \pm 5 x 10 ⁻⁸ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁸ Example frequency reference accuracy \pm (1 x 1 x 10 ⁻⁷ + 1.5 x 10 ⁻⁸ + 4 x 10 ⁻⁸)1 year after last adjustment 20 to 30 °C $= \pm$ 1.55 x 10 ⁻⁷	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 8 34.4 to 50 GHz Precision frequency reference Accuracy ± [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] Aging rate ± 1 x 10 ⁻⁷ / year ± 1.5 x 10 ⁻⁷ / 2 years ± 1.5 x 10 ⁻⁸ - 20 to 30 °C ± 1.5 x 10 ⁻⁸ - Full temperature range ± 5 x 10 ⁻⁸ Achievable initial calibration accuracy ± 4 x 10 ⁻⁸ Example frequency reference accuracy = ± (1 x 1 x 10 ⁻⁷ + 1.5 x 10 ⁻⁸ + 4 x 10 ⁻⁸) 1 year after last adjustment 20 to 30 °C = ± 1.55 x 10 ⁻⁷	
Precision frequency referenceAccuracy \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]Aging rate \pm 1 x 10 ⁻⁷ / year \pm 1.5 x 10 ⁻⁷ / 2 yearsTemperature stability- 20 to 30 °C \pm 1.5 x 10 ⁻⁸ - Full temperature range \pm 5 x 10 ⁻⁸ Achievable initial calibration accuracy \pm 4 x 10 ⁻⁸ Example frequency reference accuracy \pm t (1 x 1 x 10 ⁻⁷ + 1.5 x 10 ⁻⁸ + 4 x 10 ⁻⁸)1 year after last adjustment 20 to 30 °C $= \pm$ 1.55 x 10 ⁻⁷	
$\begin{array}{ll} \mbox{Accuracy} & \pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy] \\ \mbox{Aging rate} & \frac{\pm 1 \times 10^{-7} / year}{\pm 1.5 \times 10^{-7} / 2 years} \\ \hline \mbox{Temperature stability} & & \\ \hline \mbox{- 20 to 30 °C} & \pm 1.5 \times 10^{-8} \\ \hline \mbox{- Full temperature range} & \pm 5 \times 10^{-8} \\ \hline \mbox{- Full temperature range} & \pm 5 \times 10^{-8} \\ \hline \mbox{Achievable initial calibration accuracy} & \pm 4 \times 10^{-8} \\ \hline \mbox{Example frequency reference accuracy} & = \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8}) \\ \hline \mbox{1 year after last adjustment 20 to 30 °C} & = \pm 1.55 \times 10^{-7} \end{array}$	
Aging rate $\pm 1 \times 10^{-7} / \text{year}$ $\pm 1.5 \times 10^{-7} / 2 \text{ years}$ Temperature stability- 20 to 30 °C $\pm 1.5 \times 10^{-8}$ - Full temperature range $\pm 5 \times 10^{-8}$ Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C	
$\pm 1.5 \times 10^{-7} / 2$ yearsTemperature stability- 20 to 30 °C $\pm 1.5 \times 10^{-8}$ - Full temperature range $\pm 5 \times 10^{-8}$ Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
Temperature stability- 20 to 30 °C $\pm 1.5 \times 10^{-8}$ - Full temperature range $\pm 5 \times 10^{-8}$ Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
- 20 to 30 °C $\pm 1.5 \times 10^{-8}$ - Full temperature range $\pm 5 \times 10^{-8}$ Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
- Full temperature range $\pm 5 \times 10^{-8}$ Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
Achievable initial calibration accuracy $\pm 4 \times 10^{-8}$ Example frequency reference accuracy $= \pm (1 \times 1 \times 10^{-7} + 1.5 \times 10^{-8} + 4 \times 10^{-8})$ 1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
1 year after last adjustment 20 to 30 °C $= \pm 1.55 \times 10^{-7}$	
Desidual EM	
Residual FM	
– Center frequency = 1 GHz ≤ (0.25 Hz x N) p-p in 20 ms nominal	
- 10 Hz RBW, 10 Hz VBW See band table above for N (LO multiple)	
Frequency reference (Option EPO)	
Accuracy ± [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]	
Aging rate ± 3 x 10 ⁻⁸ / year	
Temperature stability	
- Full temperature range $\pm 4.5 \times 10^{-9}$	
Achievable initial calibration accuracy $\pm 3.1 \times 10^{-8}$	
Example frequency reference accuracy $\pm (3 \times 10 - 8 + 4.5 \times 10^{-9} + 3.1 \times 10^{-8})$	
1 year after last adjustment $= \pm 6.6 \times 10^{-8}$	
Residual FM	
– Center frequency = 1 GHz ≤ (0.25 Hz x N) p-p in 20 ms nominal	
- 10 Hz RBW, 10 Hz VBW See band table above for N (LO multiple)	
Frequency readout accuracy (start, stop, center, marker)	
± (marker frequency x frequency reference accuracy + 0.10% x span + 5% x RBW + 2 Hz + 0.5 x horizontal resolution ¹)	
Marker frequency counter	
Accuracy ± (marker frequency x frequency reference accuracy + 0.100 Hz)	
Delta counter accuracy ± (delta frequency x frequency reference accuracy + 0.141 Hz)	
Counter resolution 0.001 Hz	

1. Horizontal resolution is span/(sweep points -1).

Frequency and Time Specifications (Continued)

Frequency span (FFT and swept mode)			
Range	0 Hz (zero span), 10 Hz to maximum frequency of instrument		
Resolution	2 Hz	, <i>,</i>	
Accuracy			
– Swept	± (0.1% x span + horizontal resolution)		
– FFT	± (0.1% x span + horizontal resolution)		
Sweep time and triggering			
Range	Span = 0 Hz	1 µs to 6000 s	
	Span ≥ 10 Hz	1 ms to 4000 s	
Accuracy	Span ≥ 10 Hz, swept	± 0.01% nominal	
	Span ≥ 10 Hz, FFT	± 40% nominal	
	Span = 0 Hz	± 0.01% nominal	
Sweep trigger	Free run, line, video, external 1, externa	al 2, RF burst, periodic timer	
Trigger Delay	Span = 0 Hz or FFT	–150 to +500 ms	
	Span ≥ 10 Hz, swept	0 to 500 ms	
	Resolution	0.1 μs	
Time gating			
Gate methods	Gated LO; gated video; gated FFT		
Gate length range (except method = FFT)	1 μs to 5.0 s		
Gate delay range	0 to 100.0 s		
Gate delay jitter	33.3 ns p-p nominal		
Sweep (trace) point range			
All spans	1 to 100,001		
Resolution bandwidth (RBW)			
Range (–3.01 dB bandwidth)			
– Standard	1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MI	Hz	
 With Option B85 and Option RBE 	10, 15, 20, 25, 30, 40, 50, 60, and 70 M	IHz, in Spectrum Analyzer mode and zero span	
 With Option B1X and Option RBE 	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 1	00, and 133 MHz, in Spectrum Analyzer mode and zero span	
– With Option B2X or B5X and Option RBE	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 10 and zero span	00, 133, 150, 200, and 212 MHz, in Spectrum Analyzer mode	
Bandwidth accuracy (power)	1 Hz to 100 kHz	± 0.5% (± 0.022 dB)	
RBW range	110 kHz to 1.0 MHz (< 3.6 GHz CF)	± 1.0% (± 0.044 dB)	
	1.1 to 2 MHz (< 3.6 GHz CF)	± 0.07 dB nominal	
	2.2 to 3 MHz (< 3.6 GHz CF)	0 to –0.2 dB nominal	
	4 to 8 MHz (< 3.6 GHz CF)	0 to –0.4 dB nominal	
Bandwidth accuracy (-3.01 dB)			
– RBW range	1 Hz to 1.3 MHz	± 2% nominal	
Selectivity (-60 dB/-3 dB)		4.1:1 nominal	
EMI bandwidth (CISPR compliant)	200 Hz, 9 kHz, 120 kHz, 1 MHz	(Option EMC required)	
EMI bandwidth (MIL STD 461E compliant)	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz	(Option EMC required)	
Analysis bandwidth ¹			
Maximum bandwidth	Option B25 (standard)	25 MHz	
	Option B40	40 MHz	
	Option B85	85 MHz	
	Option B1X	160 MHz	
	Option B2X	255 MHz	
	Option B5X	510 MHz	
Video bandwidth (VBW)	•		
Range	1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MI	Hz, and wide open (labeled 50 MHz)	
Accuracy	± 6% nominal (in swept mode and zero		
J	· · · · · · · · · · · · · · · · · · ·		

1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

Amplitude Accuracy and Range Specifications

Amplitude range			
Measurement range			
– Preamp Off	Displayed average noise	e level (DANL) to +30	dBm
– Preamp On			
– RF (Opt 503)	Displayed average noise level (DANL) to +30 dBm		
– Microwave (Opt 508, 513, 526)	Displayed average noise level (DANL) to +24 dBm		
– Millimeter-wave (Opt 544, 550)	Displayed average noise	e level (DANL) to +20	dBm
Input mechanical attenuator range (2 Hz to 50 GHz)	0 to 70 dB in 2 dB steps		
Electronic attenuator (Option EA3)			
Frequency range	2 Hz to 3.6 GHz		
Attenuation range			
 Electronic attenuator range 	0 to 24 dB, 1 dB steps		
 Full attenuation range (mechanical + electronic) 	0 to 94 dB, 1 dB steps		
Maximum safe input level			
Average total power (with and without preamp)	+30 dBm (1 W)		
Peak pulse power (< 10 μ s pulse width, < 1% duty cycle, input attenuation \ge 30 dB)	+50 dBm (100 W)		
DC volts			
- DC coupled	± 0.2 Vdc		
 AC coupled 	± 100 Vdc (For frequenc	cy Option 503, 508, 5	13, or 526)
Display range			
Log scale	0.1 to 1 dB/division in 0		
	1 to 20 dB/division in 1	dB steps (10 display of	divisions)
Linear scale	10 divisions		
Scale units	dBm, dBmV, dBµV, dBm		
Frequency response		Specification	95th percentile (≈ 2 s)
(10 dB input attenuation, 20 to 30 °C, preselector centering appli	ied above 3.6 GHz)		
RF/MW (Option 503, 508, 513, 526)	3 Hz to 10 MHz	± 0.46 dB	
	10 to 20 MHz	± 0.35 dB	
	20 MHz to 3.6 GHz	± 0.35 dB	± 0.16 dB
	3.5 to 8.4 GHz	± 1.5 dB	± 0.39 dB
	8.3 to 13.6 GHz	± 2.0 dB	± 0.56 dB
	13.5 to 22.0 GHz	± 2.0 dB	± 0.81 dB
	22.0 to 26.5 GHz	± 2.5 dB	± 0.82 dB
Millimeter-Wave (Option 544, 550)	3 Hz to 20 MHz	± 0.46 dB	
	20 to 50 MHz	± 0.35 dB	± 0.19 dB
	50 MHz to 3.6 GHz	± 0.35 dB	± 0.15 dB
	3.5 to 5.2 GHz	± 1.7 dB	± 0.70 dB
	5.2 to 8.4 GHz	± 1.5 dB	± 0.57 dB
	8.3 to 13.6 GHz	± 2.0 dB	± 0.54 dB
	13.5 to 17.1 GHz	± 2.0 dB	± 0.64 dB
	17.0 to 22.0 GHz	± 2.0 dB	± 0.72 dB
		± 2.5 dB	± 0.71 dB
	22.0 to 26.5 GHz		
	26.4 to 34.5 GHz	± 2.5 dB	± 1.00 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz		
Preamp on (0 dB attenuation) (Option P03, P08, P13, P26, P44	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50)	± 2.5 dB	± 1.00 dB ± 1.37 dB
Preamp on (0 dB attenuation) (Option P03, P08, P13, P26, P4 RF/MW (Option 503, 508, 513, 526)	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz	± 2.5 dB ± 3.2 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz	± 2.5 dB ± 3.2 dB ± 0.68 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz	± 2.5 dB ± 3.2 dB ± 0.68 dB ± 0.55 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB ± 0.30 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz	± 2.5 dB ± 3.2 dB ± 0.68 dB ± 0.55 dB ± 2.0 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB ± 0.30 dB ± 0.69 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	± 2.5 dB ± 3.2 dB ± 0.68 dB ± 0.55 dB ± 2.0 dB ± 2.3 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB ± 0.30 dB ± 0.69 dB ± 0.71 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	± 2.5 dB ± 3.2 dB ± 0.68 dB ± 0.55 dB ± 2.0 dB ± 2.3 dB ± 2.5 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB ± 0.30 dB ± 0.69 dB ± 0.71 dB ± 0.95 dB
	26.4 to 34.5 GHz 34.4 to 50 GHz 4, P50) 9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	± 2.5 dB ± 3.2 dB ± 0.68 dB ± 0.55 dB ± 2.0 dB ± 2.3 dB	± 1.00 dB ± 1.37 dB ± 0.38 dB ± 0.34 dB ± 0.30 dB ± 0.69 dB ± 0.71 dB

Amplitude Accuracy and Range Specifications (Continued)

Millimeter-Wave (Option 544, 550)	9 to 100 kHz		± 0.40 dB
	100 kHz to 50 MHz	± 0.68 dB	± 0.34 dB
	50 MHz to 3.6 GHz	± 0.60 dB	± 0.31 dB
	3.5 to 5.2 GHz	± 2.0 dB	± 0.81 dB
	5.2 to 8.4 GHz	± 2.0 dB	± 0.70 dB
	8.3 to 13.6 GHz	± 2.3 dB	± 0.79 dB
	13.5 to 17.1 GHz	± 2.5 dB	± 0.88 dB
	17.0 to 22.0 GHz	± 3.0 dB	± 1.07 dB
	22.0 to 26.5 GHz	± 3.5 dB	± 1.03 dB
	26.4 to 34.5 GHz	± 3.0 dB	± 1.35 dB
	34.4 to 50 GHz	± 4.1 dB	± 1.69 dB
nput attenuation switching uncertai	nty	Specifications	Additional information
Relative to 10 dB and preamp off			
at 50 MHz (reference frequency)	Attenuation 12 to 40 dB	± 0.14 dB	± 0.04 dB typical
	Attenuation 2 to 8 dB	± 0.18 dB	± 0.06 dB typical
	Attenuation 0 dB		± 0.05 dB nominal
Attenuation > 2 dB			
- 3 Hz to 3.6 GHz			± 0.3 dB nominal
- 3.5 to 8.4 GHz			± 0.5 dB nominal
– 8.3 to 13.6 GHz			± 0.7 dB nominal
- 13.5 to 26.5 GHz			± 0.7 dB nominal
- 26.4 to 50 GHz			± 1.0 dB nominal
Total absolute amplitude accuracy			
10 dB attenuation, 20 to 30 °C, 1 Hz ≤	RBW ≤ 1 MHz, input signal –10 to	-50 dBm, all settings auto-coupled exce	pt Auto Swp Time = Accy, any refer
evel, any scale, s = nominal standard c	At 50 MHz	± 0.24 dB	
	At all frequencies	± 0.24 dB + frequency response)	
	10 Hz to 3.6 GHz	± 0.19 dB (95th Percentile approx.	20)
			. ZS)
	At all fraguanaiaa	(0.26 dD, fraguanay raananaa)	
Option P03, P08, P13, P26, P44 and	At all frequencies	± (0.36 dB + frequency response)	
Option P03, P08, P13, P26, P44 and P50)			
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	SWR)	Freq Opt 503, 508, 513, 526	Freq Opt 544, 550
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz	Freq Opt 503, 508, 513, 526 1.09 nominal	1.025 nominal
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 10 MHz to 3.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile)	1.025 nominal 1.134 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile)	1.025 nominal1.134 (95th percentile)1.152 (95th percentile)1.178 (95th percentile)1.212 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile)	1.025 nominal1.134 (95th percentile)1.152 (95th percentile)1.178 (95th percentile)1.212 (95th percentile)1.331 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile)	1.025 nominal1.134 (95th percentile)1.152 (95th percentile)1.178 (95th percentile)1.212 (95th percentile)1.331 (95th percentile)1.373 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) NA	1.025 nominal1.134 (95th percentile)1.152 (95th percentile)1.178 (95th percentile)1.212 (95th percentile)1.331 (95th percentile)1.373 (95th percentile)1.389 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.47 (95th percentile) NA NA 1.71 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) NA	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.47 (95th percentile) NA NA 1.71 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.41 (95th percentile) 1.43 (95th percentile) 1.44 (95th percentile) 1.45 (95th percentile) 1.54 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.303 (95th percentile) 1.310 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.300 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 26.4 to 34.5 GHz 26.4 to 34.5 GHz 26.4 to 34.5 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.49 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.303 (95th percentile) 1.300 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and 250)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 34.4 to 50 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) NA NA	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.300 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.341 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and 250) Preamp on (0 dB input attenuation)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.51 (95th percentile) 1.54 (95th percentile) 1.55 (95th percentile) 1.55 (95th percentile) 1.55 (95th percentile) NA NA NA	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.300 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile)
Option P03, P08, P13, P26, P44 and 250) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and 250) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 35.5 to 8.4 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.333 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.300 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.42 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.50 (95th percentile)
Option P03, P08, P13, P26, P44 and P50) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35 to 17.1 GHz 10 MHz to 3.6 GHz 35 to 17.1 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 34.4 to 50 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.333 (95th percentile) 1.339 (95th percentile) 1.393 (95th percentile) 1.300 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.339 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.41 (95th percentile) 1.393 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.310 (95th percentile) 1.310 (95th percentile) 1.310 (95th percentile) 1.50 (95th percentile) 1.310 (95th percentile)
Option P03, P08, P13, P26, P44 and P50) nput voltage standing wave ratio (VS 10 dB input attenuation) Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and Preamp on (0 dB input attenuation) Option P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 3.5 to 7.1 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.50 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.310 (95th percentile) 1.320 (95th percentile) 1.333 (95th percentile) 1.350 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile)
Option P03, P08, P13, P26, P44 and P50) Input voltage standing wave ratio (VS (10 dB input attenuation) (10 dB input attenuation) (20 ption P03. P08, P13, P26, P44, and P50) Preamp on (0 dB input attenuation) (20 ption P03. P08, P13, P26, P44, and	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 7.1 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 8.3 to 13.6 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 13.5 to 17.1 GHz 13.5 to 17.1 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.44 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.54 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.50 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.303 (95th percentile) 1.330 (95th percentile) 1.333 (95th percentile) 1.41 (95th percentile) 1.333 (95th percentile) 1.333 (95th percentile) 1.330 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile)
Preamp on (Option P03, P08, P13, P26, P44 and P50) Input voltage standing wave ratio (VS (10 dB input attenuation) (10 dB input attenuation) (0 dB input attenuation) (0ption P03. P08, P13, P26, P44, and P50) Preamp on (0 dB input attenuation) (0ption P03. P08, P13, P26, P44, and P50)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 7.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 3.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 35.5 to 8.4 GHz 34.4 to 50 GHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 3.5 to 7.1 GHz	Freq Opt 503, 508, 513, 526 1.09 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.41 (95th percentile) 1.48 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile)	1.025 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.212 (95th percentile) 1.331 (95th percentile) 1.373 (95th percentile) 1.389 (95th percentile) 1.393 (95th percentile) 1.50 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile) 1.393 (95th percentile) 1.393 (95th percentile) 1.310 (95th percentile) 1.320 (95th percentile) 1.333 (95th percentile) 1.350 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile) 1.330 (95th percentile)

Amplitude Accuracy and Range Specifications (Continued)

1 Hz to 1.5 MHz RBW	± 0.03 dB	
1.6 MHz to 2.7 MHz RBW	± 0.05 dB	
3 MHz RBW	± 0.10 dB	
4, 5, 6, 8 MHz RBW	± 0.30 dB	
Reference level		
Range		
– Log scale	–170 to +30 dBm in 0.01 dB steps	
– Linear scale	707 pV to 7.07 V with 0.11% (0.01 dB) re	esolution
Accuracy	0 dB ¹	
Display scale switching uncertainty		
Switching between linear and log	0 dB ¹	
Log scale/div switching	0 dB ¹	
Display scale fidelity		
Between –10 dBm and –18 dBm input mixer level	± 0.10 dB total	± 0.04 dB typical
Below –18 dBm input mixer level	± 0.07 dB	± 0.02 dB typical
Trace detectors		
Standard	Normal, peak, sample, negative peak, lo	og power average, RMS average, and voltage average
With Option EMC	Add quasi-peak to above	
Preamplifier		
Frequency range ²	Option P03	9 kHz to 3.6 GHz
	Option P08	9 kHz to 8.4 GHz
	Option P13	9 kHz to 13.6 GHz
	Option P26	9 kHz to 26.5 GHz
	Option P44	9 kHz to 44 GHz
	Option P50	9 kHz to 50 GHz
Gain	100 kHz to 3.6 GHz	+20 dB nominal
	3.6 to 26.5 GHz	+35 dB nominal
	26.5 to 50 GHz	+40 dB nominal

Only affects the display, not the measurement, so it causes no additional error in measurement results from trace data or markers.
 Below 100 kHz, only 95th percentile (approx. 2s) value for frequency response is provided.

Dynamic Range Specifications

I dB gain compression (two-tone)	- 00 +- 00 %O)	Maximum power at input mixer	
At 1 kHz RBW with 100 kHz tone spacin	20 to 40 MHz	–3 dBm	0 dBm typical
	40 to 200 MHz	+1 dBm	+3 dBm typical
	200 MHz to 3.6 GHz	+3 dBm	+5 dBm typical
	3.6 to 16 GHz	+1 dBm	+4 dBm typical
	16 to 26.5 GHz	–1 dBm	+2 dBm typical
	26.5 to 50 GHz		0 dBm nominal
Preamp on	10 MHz to 3.6 GHz		–14 dBm nominal
Option P03, P08, P13, P26, P44, and	3.6 to 26.5 GHz		
P50)	Tone spacing 100 kHz to 20 MHz		–28 dBm nominal
	Tone spacing > 70 MHz		
	Freq Option ≤ 526		–10 dBm nominal
	Freq Option > 526		–20 dBm nominal
	26.5 to 50 GHz		–30 dBm nominal
Displayed average noise level (DANL) ⁴		Specification	Typical
Input terminated, sample or average de	tector, averaging type = Log, 0 dB inp	out attenuation, IF Gain = High, 1 Hz RBW	', 20 to 30 °C)
RF/MW (Option 503, 508, 513, 526)		Normal 1/LNP enabled ²	Normal 1/LNP enabled ²
Preamp off	3 Hz to 9 kHz		–100 dBm/NA nominal
	9 to 100 kHz	–146 dBm/NA	–151 dBm/NA typical
	100 kHz to1 MHz	–150 dBm/NA	–156 dBm/NA typical
	1 to 10 MHz	–155 dBm/NA	–158 dBm/NA typical
	10 MHz to 1.2 GHz	–154 dBm/NA	–155 dBm/NA typical
	1.2 to 2.1 GHz	–153 dBm/NA	–155 dBm/NA typical
	2.1 to 3.0 GHz	–151 dBm/NA	–153 dBm/NA typical
	3.0 to 3.6 GHz	–151 dBm/NA	–153 dBm/NA typical
	3.5 to 4.2 GHz	–147 dBm/–153 dBm	–150 dBm/–155 dBm typical
	4.2 to 8.4 GHz	–150 dBm/–155 dBm	–152 dBm/–156 dBm typical
	8.3 to 13.6 GHz	–149 dBm/–155 dBm	–151 dBm/–156 dBm typical
	13.5 to 16.9 GHz	–145 dBm/–152 dBm	–147 dBm/–154 dBm typical
	16.9 to 20.0 GHz	–143 dBm/–151 dBm	–145 dBm/–153 dBm typical
	20.0 to 26.5 GHz	–137 dBm/–150 dBm	-140 dBm/-152 dBm typical
^D reamp on ³	100 to 200 kHz	–152 dBm/NA	–159 dBm/NA typical
	200 to 500 kHz	–155 dBm/NA	–161 dBm/NA typical
	0.5 to 1 MHz	–157 dBm/NA	–164 dBm/NA typical
	1 to 10 MHz	–161 dBm/NA	–165 dBm/NA typical
	10 MHz to 2.1 GHz	–165 dBm/NA	–166 dBm/NA typical
	2.1 to 3.6 GHz	-163 dBm/NA	–164 dBm/NA typical
	3.5 to 8.4 GHz	–164 dBm/NA	–166 dBm/NA typical
	8.3 to 13.6 GHz	-163 dBm/NA	–164 dBm/NA typical
	13.5 to 16.9 GHz	-161 dBm/NA	–162 dBm/NA typical
	16.9 to 20.0 GHz	–159 dBm/NA	–161 dBm/NA typical
	20.0 to 26.5 GHz	–155 dBm/NA	–157 dBm/NA typical

DANL improvement exceeds 9 dB with 95% confidence in the average of all bands, paths (normal, preamp, low noise path and microwave preselector bypass), frequency options and signal path options (LNP and MPB). DANI with Noise Floor Extension

DANE WITH NOISE FLOOR EXTENSION	
Frequency	Preamp On
Band 0, f > 20 MHz	–174 dBm
Band 1	–174 dBm
Band 2	–173 dBm
Band 3	–172 dBm
Band 4	–166 dBm

With Option NF2 (Noise Floor Extension) "Off". 1.

2.

LNP (Low Noise Path) requires option LNP. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp. With standard LO. Instruments with DDS LO (Option EPO) may see a few dB degradation in DANL. See specifications guide for details. 3.

4.

Displayed average noise level (DANL) ¹ Millimeter-Wave (Option 544, 550)		Specification	Typical
		Normal ² /LNP enabled ³	Normal 2/LNP enabled ³
Preamp off	3 Hz to 9 kHz		–100 dBm/NA nominal
	9 to 100 kHz	–146 dBm/NA	–151 dBm/NA typical
	100 kHz to 1 MHz	–150 dBm/NA	–156 dBm/NA typical
	1 to 10 MHz	–155 dBm/NA	–158 dBm/NA typical
	10 MHz to 1.2 GHz	–154 dBm/NA	–155 dBm/NA typical
	1.2 to 2.1 GHz	–153 dBm/NA	–155 dBm/NA typical
	2.1 to 3 GHz	–151 dBm/NA	–153 dBm/NA typical
	3 to 3.6 GHz	–151 dBm/NA	–153 dBm/NA typical
	3.5 to 4.2 GHz	–143 dBm/–150 dBm	–147 dBm/–153 dBm typical
	4.2 to 6.6 GHz	–144 dBm/–152 dBm	–148 dBm/–154 dBm typical
	6.6 to 8.4 GHz	–147 dBm/–154 dBm	–149 dBm/–154 dBm typical
	8.3 to 13.6 GHz	–147 dBm/–153 dBm	–149 dBm/–154 dBm typical
	13.5 to 14 GHz	–143 dBm/–150 dBm	–146 dBm/–152 dBm typical
	14 to 17 GHz	-145 dBm/-151 dBm	–148 dBm/–153 dBm typical
	17 to 22.5 GHz	–141 dBm/–149 dBm	–146 dBm/–150 dBm typical
	22.5 to 26.5 GHz	-139 dBm/-146 dBm	–143 dBm/–149 dBm typical
	26.4 to 30 GHz	-138 dBm/-146 dBm	–142 dBm/–149 dBm typical
	30 to 34 GHz	-138 dBm/-146 dBm	–142 dBm/–148 dBm typical
	33.9 to 37 GHz	–134 dBm/–141 dBm	–139 dBm/–146 dBm typical
	37 to 40 GHz	-132 dBm/-140 dBm	–138 dBm/–142 dBm typical
	40 to 46 GHz	-130 dBm/-140 dBm	–135 dBm/–142 dBm typical
	46 to 49 GHz	-130 dBm/-138 dBm	–135 dBm/–140 dBm typical
	49 to 50 GHz	–128 dBm/–138 dBm	–133 dBm/–140 dBm typical
Preamp on ⁴	100 to 200 kHz	–152 dBm	–159 dBm typical
	200 to 500 kHz	–155 dBm	–161 dBm typical
	500 kHz to 1 MHz	–157 dBm	–164 dBm typical
	1 to 10 MHz	–161 dBm	–165 dBm typical
	10 MHz to 2.1 GHz	–164 dBm	–166 dBm typical
	2.1 to 3.6 GHz	–163 dBm	–164 dBm typical
	3.5 to 8.4 GHz	–161 dBm	–163 dBm typical
	8.3 to 13.6 GHz	–161 dBm	–163 dBm typical
	13.5 to 17.1 GHz	–161 dBm	–163 dBm typical
	17 to 20 GHz	–160 dBm	–163 dBm typical
	20 to 26.5 GHz	-158 dBm	–161 dBm typical
	26.4 to 30 GHz	–157 dBm	–159 dBm typical
	30 to 34 GHz	–155 dBm	–158 dBm typical
	33.9 to 37 GHz	-153 dBm	–157 dBm typical
	37 to 40 GHz	-152 dBm	–156 dBm typical
	40 to 46 GHz	-149 dBm	–154 dBm typical
	46 to 50 GHz	-146 dBm	–150 dBm typical

1. With standard LO. Instruments with DDS LO (Option EPO) may see a few dB degradation in DANL. See specifications guide for details.

With Standard ED. Instruments with DDS ED (Option ET 0) may see a rew dD degradation in Drive. See specifications guide rev details.
 With Option NF2 (Noise Floor Extension) "Off".
 LNP (Low Noise Path) requires option LNP.
 At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

DANL with Noise Floor Extension (Option NF2) on 95th percentile

DANL improvement exceeds 9 dB with 95% confidence in the average of all bands, paths (normal, preamp, low noise path and microwave preselector bypass), frequency options and signal path options (LNP and MPB).

DANL with Noise Floor Extension	Preamp Off	Preamp On	LNP enabled ^{1, 2}
 Band 0, f > 20 MHz 	–163 dBm	–174 dBm	N/A
– Band 1	–159 dBm	–172 dBm	–164 dBm
– Band 2	–159 dBm	–172 dBm	–164 dBm
– Band 3	–159 dBm	–173 dBm	–164 dBm
– Band 4	–154 dBm	–169 dBm	–161 dBm
– Band 5	–153 dBm	–167 dBm	–161 dBm
– Band 6	–144 dBm	–158 dBm	–152 dBm

LNP (Low Noise Path) requires option LNP.
 At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

Residuals, images, and spurious response	S			
Residual responses (Input terminated and	200 kHz to 8.4 GHz	–100 dBm		
0 dB attenuation)	Zero span or FFT or other frequencies	–100 dBm nominal		
Image responses ⁴	Tuned Freq (f)	Excitation Freq	Response RF/MW (Opt 503, 508, 513, 526)	mmW (Opt 544, 550)
Mixer level at –10 dBm	10 MHz to 26.5 GHz	f+45 MHz	–80 dBc/–118 dBc typical	–80 dBc/–118 dBc typical
	10 MHz to 3.6 GHz	f+10,245 MHz	–80 dBc/–112 dBc typical	–80 dBc/–112 dBc typical
	10 MHz to 3.6 GHz	f+645 MHz	-80 dBc/-101 dBc typical	–80 dBc/–101 dBc typical
	3.5 to 13.6 GHz	f+645 MHz	–78 dBc/–87 dBc typical	–80 dBc/–102 dBc typical
	13.5 to 17.1 GHz	f+645 MHz	–74 dBc/–84 dBc typical	–80 dBc/–102 dBc typical
	17.0 to 22 GHz	f+645 MHz	–70 dBc/–82 dBc typical	–80 dBc/–100 dBc typical
	22 to 26.5 GHz	f+645 MHz	–68 dBc/–79 dBc typical	–70 dBc/–97 dBc typical
Mixer level at –30 dBm	26.5 to 34.5 GHz	f+645 MHz		–70 dBc/–94 dBc typical
	34.4 to 42 GHz	f+645 MHz		–59 dBc/–79 dBc typical
	42 to 50 GHz	f+645 MHz		–75 dBc nominal
	26.5 to 50 GHz	f+45 MHz		–90 dBc nominal
Other spurious responses	Mixer level	Response		
Carrier frequency ≤ 26.5 GHz				
– First RF order (f \ge 10 MHz from carrier)	–10 dBm		ncluding IF feedthrough, LO har	
– Higher RF order (f \ge 10 MHz from carrier)	–40 dBm	-80 dBc + 20log(N ¹)	Including higher order mixer resp	oonses
Carrier frequency > 26.5 GHz				
 First RF order (f ≥ 10 MHz from carrier) 	–30 dBm	–90 dBc nominal		
- Higher RF order (f \ge 10 MHz from carrier)	–30 dBm	–90 dBc nominal		
LO-related spurious responses (200 Hz ≤ f < 10 MHz from carrier)	–10 dBm	-68 dBc ² + 20log(N		
Line-related spurious responses		-73 dBc ² + 20log(N	¹) (nominal)	
Second harmonic distortion (SHI)				
	Source frequency	Mixer level	Distortion ³ (LNP Off/LNP On)	SHI ³ (LNP Off/LNP On)
RF/MW (Option 503, 508, 513, 526)	10 to 100 MHz	–15 dBm	–57 dBc/NA	+42 dBm/NA
	0.1 to 1.8 GHz	–15 dBm	-60 dBc/NA	+45 dBm/NA
	1.75 to 2.5 GHz	–15 dBm	–77 dBc/–95 dBc	+62 dBm/+80 dBm
	2.5 to 4 GHz	–15 dBm	-77 dBc/-101 dBc	+62 dBm/+86 dBm
	4 to 6.5 GHz	–15 dBm	–77 dBc/–105 dBc	+62 dBm/+90 dBm
	6.5 to 10 GHz	–15 dBm	–70 dBc/–105 dBc	+55 dBm/+90 dBm
	10 to 13.25 GHz	–15 dBm	-62 dBc/-105 dBc	+47 dBm/+90 dBm
Millimeter-Wave (Option 544, 550)	10 to 100 MHz	–15 dBm	–57 dBc/NA	+42 dBm/NA
	100 M to 1.8 GHz	–15 dBm	-60 dBc/NA	+45 dBm/NA
	1.8 to 2.5 GHz	–15 dBm	–72 dBc/–95 dBc	+57 dBm/+80 dBm
	2.5 to 3 GHz	–15 dBm	–72 dBc/–99 dBc	+57 dBm/+84 dBm
	3 to 5 GHz	–15 dBm	–77 dBc/–99 dBc	+62 dBm/+84 dBm
	5 to 6.5 GHz	–15 dBm	–77 dBc/–105 dBc	+62 dBm/+90 dBm
	6.5 to 10 GHz	–15 dBm	-70 dBc/-105 dBc	+55 dBm/+90 dBm
	10 to 13.25 GHz	–15 dBm	-62 dBc/-105 dBc	+47 dBm/+90 dBm
	13.25 to 25 GHz	–15 dBm	-65 dBc/-105 dBc (nom.)	+50 dBm/+90 dBm (nom.)
	401411 - 40001	Preamp level	Distortion	SHI
Preamp on (Option P03, P08, P13, P26,	10 MHz to 1.8 GHz	-45 dBm	–78 dBc nominal	+33 dBm nominal
P44, P50)	1.8 to 13.25 GHz	-50 dBm	-60 dBc nominal	+10 dBm nominal
	13.25 to 25 GHz	–50 dBm	–50 dBm nominal	0 dBm nominal

N is the LO multiplication factor. Refer to page 4 for the N value verses frequency ranges.
 Nominally -40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
 Normal path/LNP enabled (requires Option LNP).
 With standard LO. Instruments with DDS LO (option EP0) may see a few dB degradation in DANL. See specifications guide for details.

Third-order intermodulation distortion (TOI)

Two -16 dBm tones (10 MHz to 26.5 GHz) or two -20 dBm tones (26.5 GHz to 50 GHz) at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to 30 °C

For all frequency options	10 to 150 MHz	+13 dBm	+16 dBm typical
(Option 503, 508, 513, 526, 544,	150 to 600 MHz	+18 dBm	+21 dBm typical
and 550)	0.6 to 1.1 GHz	+20 dBm	+22 dBm typical
	1.1 to 3.6 GHz	+21 dBm	+23 dBm typical
For RF/MW only	3.5 to 8.4 GHz	+17 dBm	+23 dBm typical
(Option 503, 508, 513, and 526)	8.3 to 13.6 GHz	+17 dBm	+23 dBm typical
	13.5 to 17.1 GHz	+15 dBm	+20 dBm typical
	17.0 to 26.5 GHz	+16 dBm	+22 dBm typical
For Millimeter-Wave only	3.5 to 8.4 GHz	+16 dBm	+23 dBm typical
(Option 544 and 550)	8.3 to 13.6 GHz	+16 dBm	+23 dBm typical
	13.5 to 17.1 GHz	+13 dBm	+17 dBm typical
	17.0 to 26.5 GHz	+13 dBm	+20 dBm typical
	26.4 to 34.5 GHz	+13 dBm	+18 dBm typical
	34.4 to 50 GHz	+10 dBm	+15 dBm typical
Preamp on (Option P03, P08, P13, F	P26, P44, and P50)		
Tones at preamp input			
– (two –45 dBm)	10 to 500 MHz		+4 dBm nominal
– (two –45 dBm)	500 MHz to 3.6 GHz		+4.5 dBm nominal
– (two –50 dBm)	3.6 to 26.5 GHz		–15 dBm nominal

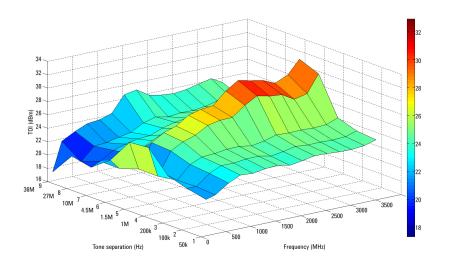


Figure 1. Nominal TOI performance versus frequency and tone separation.

Phase noise	Offset	Specification	Typical
Noise sidebands (20 to 30 °C	C, CF = 1 GHz)		
Standard LO	10 Hz		–80 dBc/Hz nominal
	100 Hz	–94 dBc/Hz	–100 dBc/Hz typical
	1 kHz	–121 dBc/Hz	–125 dBc/Hz typical
	10 kHz	–129 dBc/Hz	–132 dBc/Hz typical
	30 kHz	–130 dBc/Hz	–132 dBc/Hz typical
	100 kHz	–129 dBc/Hz	–131 dBc/Hz typical
	1 MHz	–145 dBc/Hz	–146 dBc/Hz typical
	10 MHz	–155 dBc/Hz	–158 dBc/Hz typical
DDS LO (Option EPO)	10 Hz		–95 dBc/Hz typical ¹
	100 Hz	–107 dBc/Hz	–112 dBc/Hz typical
	1 kHz	–125 dBc/Hz	–129 dBc/Hz typical
	10 kHz	–134 dBc/Hz	–136 dBc/Hz typical
	100 kHz	–139 dBc/Hz	–141 dBc/Hz typical
	1 MHz	–145 dBc/Hz	–146 dBc/Hz typical
	10 MHz	–155 dBc/Hz	–157 dBc/Hz typical
Option MPB, microwave pres	elector bypass ²		
Frequency range			
N9030B-508	3.6 to 8.4 GHz		
N9030B-513	3.6 to 13.6 GHz		
N9030B-526	3.6 to 26.5 GHz		
N9030B-544	3.6 to 44 GHz		
N9030B-550	3.6 to 50 GHz		

1. For wide reference loop bandwidth.

2. When Option MPB is installed and enabled, some aspects of the analyzer performance change. Please refer to the PXA specification guide for more details.

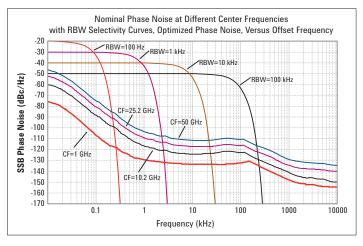


Figure 3. Nominal PXA phase noise at various center frequencies with standard LO. $\ensuremath{\mathsf{LO}}$

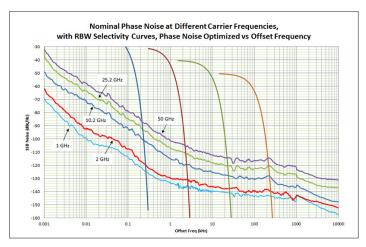


Figure 4. Nominal PXA phase noise at various center frequencies with DDS LO (Option EP0).

PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to 30 °C, attenuation = 10 dB)	± 0.61 dB (± 0.19 dB 95th percentile)	
Occupied bandwidth		
Frequency accuracy	± [span/1000] nominal	
Adjacent channel power		
Accuracy, 3GPP W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate
– MS (UE)	± 0.08 dB	± 0.09 dB
– BTS	± 0.22 dB	± 0.18 dB
Dynamic range (typical)		
 Without noise correction 	-81.5 dB	-87 dB
– With noise correction	-82.5 dB	-88 dB
Offset channel pairs measured	1 to 6	
Multi-carrier ACP		
Accuracy, 3GPP W-CDMA (ACPR) (4 carriers, 5 MHz offset, BTS, UUT ACPR range at -42 to -48 dB, optimal mixer level at -21 dBm)	± 0.09 dB	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10th	
Result	Fundamental power (dBm), relative harmonics	power (dBc), total harmonic distortion in %
Intermod (TOI)	Measure the third-order products and interce	pts from two tones
Burst power		
Methods	Power above threshold, power within burst wi	dth
Results	Single burst output power, average output po burst, burst width	wer, maximum power, minimum power within
Spurious emission		
3GPP W-CDMA table-driven spurious signals; search ac	ross regions	
– Dynamic range (RBW=1 MHz) (1 to 3.6 GHz)	88.8 dB	91.8 dB typical
– Absolute sensitivity (RBW=1 MHz) (1 to 3.6 GHz)	-88.5 dBm	–91.5 dBm typical
Spectrum emission mask (SEM)		
cdma2000® (750 kHz offset)		
 Relative dynamic range 	85.9 dB	89.5 dB typical
 Absolute sensitivity 	-103.7 dBm	–106.7 dBm typical
- Relative accuracy	± 0.08 dB	
3GPP W-CDMA (2.515 MHz offset)		
 Relative dynamic range 	87.9 dB	92.6 dB typical
– Absolute sensitivity	-103.7 dBm	–106.7 dBm typical
- Relative accuracy	± 0.08 dB	
· · · ·		

General Specifications

Temperature range	
Operating	0 to 55 °C
Storage	-40 to +70 °C
Altitude	
	4,500 meters (approx 15,000 feet)

EMC

Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are

cited in the Declaration of Conformity): - IEC/EN 61326-1 - CISPR 11 Group 1, Class A - AS/NZS CISPR 11 - ICES/NMB-001 This ISM device complies with Canadian ICES-001 Cet appareil ISM est conforme a la norme NMB-001 du Canada South Korean Class A EMC declaration This equipment is Class A suitable for professional use and is for use in electromagnetic environments outside of the home. A 급 기기 (업무용 방송통신기자재)이 기 기는 업무용 (A 급) 전자파적합기기로서 판 매자 또는 사용자는 이 점을 주 의하시기 바라 며, 가 정외의 지역에서 사용하는 것을 목적으 로 합니다. Safetv Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity): - IEC/EN 61010-1 - Canada: CSA C22.2 No. 61010-1 - USA: UL std no. 61010-1 Acoustic statement (European Machinery Directive) Acoustic noise emission LpA < 70 dB Operator position Normal operation mode per ISO 7779 Acoustic noise - more information (Values given are per ISO 7779 standard in the "Operator Sitting" position) Ambient temperature - < 40 °C Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environment - ≥ 40°C Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environment **Environmental stress** Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements

Voltage and frequency	100 /120 V, 50/60/400 Hz	The instruments can operate with mains supply voltage
	220/240 V, 50/60 Hz	fluctuations up to ± 10% of the nominal voltage
Power consumption		
– On	630 W (Maximum)	
– Standby	45 W	

General Specifications (Continued)

Display	
Resolution	1280 x 800
Size	269 mm (10.6 in.) diagonal (nominal) capacitive multi-touch screen
Data storage	
Internal	Removable solid state drive (\ge 160 GB) and secure digital (SD) memory device
External	Supports USB 3.0/2.0 compatible memory devices
Weight (without options)	
Net	22 kg (48 lbs) nominal
Shipping	34 kg (75 lbs) nominal
Dimensions	
Height	177 mm (7.0 in)
Width	426 mm (16.8 in)
Length	556 mm (21.9 in)
Calibration cycle	
The recommended calibration cycle is one ye	ear. Calibration services are available through Keysight service centers

Inputs and Outputs

Front panel	
RF input connector	
– Standard (Option 503, 508, 513, 526)	Type-N female, 50 Ω nominal
 Option C35 (with Option 526 only) 	APC 3.5 mm male, 50 Ω nominal
 Standard (Option 544, 550) 	2.4 mm male, 50 Ω nominal
Analog baseband IQ inputs (Option BBA) ¹	
 Connectors (I, Q, I-Bar, Q-Bar, and Cal Out) 	BNC female
– Cal Out	AC coupled square wave
– Signal	Selectable between 1 kHz and 250 kHz
– Frequency	50 Ω , 1 M Ω (selectable, nominal)
Input impedance (4 connectors: I, Q, I-, Q-)	
Probes supported ²	1130A, 1131A, 1132A, 1134A
 Active probe 	1161A
 Passive probe 	–5 dB (0 to 10 MHz, nominal)
 Input return loss 	–0 dB (10 to 40 MHz. nominal)
 – 50 Ω impedance only selected 	
Probe power	
 Voltage/current 	+15 Vdc, ± 7% at 150 mA max nominal
	–12.6 Vdc, ± 10% at 150 mA max nominal
USB ports	
– Host (3 ports)	
– Standard	Compatible with USB 2.0
– Connector	USB Type-A female
 Output current 	
 Port marked with lightning bolt 	1.2 A (nominal)
 Ports not marked with lightning bolt 	0.5 A
Headphone jack	Miniature stereo audio jack (3.5 mm, also known as "1/8 inch")

For additional specifications, please refer to Chapter BBA in the PXA Signal Analyzer specification guide. For more details, please refer to the Keysight Probe Configuration Guides, literature numbers 5968-7141EN and 5989-6162EN; probe heads are necessary to attach to your device properly and probe connectivity kits such as E2668B, E2669A. or E2675A are required. 1. 2.

Inputs and Outputs (Continued)

External mixing, Option EXM

Externat mixing, option Exw	
Connection port	
– Connector	SMA, female
– Impedance	50 Ω nominal
– Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	± 10 mA in 10 uA step
IF input center frequency	
– ≤ 25 MHz IF path	322.5 MHz
 40 MHz BW IF path 	250.0 MHz
 85 or 160 MHz BW IF path 	300 MHz
– 255 MHz BW IF path	750.0 MHz
– 510 MHz BW IF path	877.1484375 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
– Connector	BNC female, 50 Ω nominal
– Output amplitude	≥ 0 dBm nominal
– Frequency	10 MHz + (10 MHz x frequency reference accuracy)
Ext Ref In	
– Connector	BNC female, 50 Ω nominal
 Input amplitude range 	–5 to 10 dBm nominal
 Input frequency 	1 to 50 MHz nominal (selectable to 1 Hz resolution)
 Frequency lock range 	\pm 2 x 10–6 of specified external reference input frequency
Trigger 1 and 2 inputs	
– Connector	BNC female
– Impedance	> 10 kΩ nominal
– Trigger level range	–5 to +5 V (TTL) factory preset
Trigger 1 and 2 outputs	
– Connector	BNC female
– Impedance	50 Ω nominal
– Level	0 to 5 V (CMOS) nominal
Sync (reserved for future use)	
– Connector	BNC female
Monitor output 1	
– Connector	VGA compatible, 15-pin mini D-SUB
– Format	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
 Resolution 	1024 x 768
Monitor output 2	
– Connector	Mini DisplayPort
 Resolution 	1024 x 768
Noise source drive +28 V (pulsed)	
– Connector	BNC female
– Output voltage	On 28.0 ± 0.1 V (60 mA maximum)
	Off < 1 V
SNS series noise source	For use with the Agilent/Keysight SNS Series noise sources
Digital bus	
– Connector	MDR-80

Inputs and Outputs (Continued)

Rear panel

Appleg out	
Analog out	DNC forcelo
- Connector	BNC female
USB ports	2 ports (stacked with each other)
- Host, super speed	Compatible with USB 3.0
– Standard	
- Connector	USB Type-A female 0.9 A
– Output current	1 port (stacked with LAN)
– Host – Standard	USB 2.0
– Standard – Connector	USB Z.0 USB Type-A female
– Output current	0.5 A
- Device	0.5 A
– Device – Standard	Compatible with USB 3.0
– Standard – Connector	USB Type-B female
GPIB interface	USD Type-D terridle
- Connector	IEEE-488 bus connector
– Connector – GPIB codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
– GPIB codes – GPIB mode	Controller or device
LAN TCP/IP interface	
- Standard	1000Base-T
– Connector	RJ45 Ethertwist
IF output	KJ40 ELITEI LWISL
- Connector	SMA female, shared by Opts CR3, CRP, and ALV
- Impedance	50Ω nominal
2nd IF output, Option CR3	30 12 HOHHHat
Center frequency	
	322.5 MHz
 SA mode or I/Q analyzer with IF BW ≤ 25 MHz with Option B40 	250 MHz
 with Option B40 with Option B85/B1X 	300 MHz
- with Option B2X	
– with Option B5X	750 MHz 877.1484375 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	-1 to +4 oB (nominal) plus RF frequency fesponse
Low band	
 – IF Path ≤ 160 MHz 	Up to 160 MHz (nominal)
- IF Path 255 MHz	Up to 255 MHz (nominal)
– IF Path 510 MHz	Up to 510 MHz (nominal)
High band, with preselector	Depends on center frequency
High band, with preselector bypassed ¹ Programmable IF output, Option CRP	Up to 700 MHz (nominal); expandable to 900 MHz with corrections
Center frequency	10 to 75 MHz (user selectable)
- Range	
- Resolution	0.5 MHz
Conversion gain Bandwidth	–1 to +4 dB (nominal) plus RF frequency response
Output at 70 MHz	100 MULT (nominal)
 Low band or high band with preselector bypassed 	100 MHz (nominal)
- Preselected band	Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	≤ –88 dBm (nominal)

1. The maximum bandwidth is not centered around the IF output center frequency.

Other Optional Output

Option ALV Log video out

General port specifications		
Connector	SMA female	Shared with other options
Impedance		50 Ω nominal
Fast log video output		
Output voltage	Open-circuit voltages shown	
– Maximum	1.6 V at –10 dBm nominal	
– Slope	25 ± 1 mV/dB nominal	
Log fidelity		
– Range	49 dB (nominal) with input frequency at 1 GHz	
 Accuracy within range 	± 1.0 dB nominal	
Rise time	15 ns nominal	
Fall time		
– Bands 1-4 with Option MPB	40 ns nominal best case	
– Other cases	Depends on bandwidth	

Option YAV Y-Axis output

General port specifications		
Connector	BNC female	Shared with other options
Impedance		50 Ω nominal
Screen video		
Operating conditions		
 Display scale types 	Log or Lin	"Lin" is linear in voltage
– Log scales	All (0.1 to 20 dB/div)	
– Modes	Spectrum analyzer only	
– Gating	Gating must be off	
Output scaling	0 to 1.0 V open circuit, representing	bottom to top of screen
– Offset	± 1% of full scale nominal	
 Gain accuracy 	± 1% of output voltage nominal	
Delay between RF input to analog output	71.7 μs +2.56/RBW + 0.159/VBW no	ominal
Log video (Log envelope) output		
Amplitude range (terminated with 50 Ω)		
Maximum	1.0 V nominal for –10 dBm at the mix	xer
Scale factor	1 V per 192.66 dB	
Bandwidth	Set by RBW	
Operating conditions	Select Sweep Type = Swept	
Linear video (AM Demod) output		
Amplitude range (terminated with 50 Ω)		
Maximum	1.0 V nominal for signal envelope at	the reference level
Minimum	0 V	
Scale factor	If carrier level is set to half the refer volt. Regardless of the carrier level,	ence level in volts, the scale factor is 200% of carrier level per the scale factor is 100% of reference level per volt.
Bandwidth	Set by RBW	
Operating conditions	Select Sweep Type = Swept	

I/Q Analyzer

Frequency					
Frequency span					
 Option B25 (standard) 	10 Hz to 25 MHz				
 Option B40 	10 Hz to 40 MHz				
 Option B85 	10 Hz to 85 MHz				
 Option B1X 	10 Hz to 160 MHz				
 Option B2X 	10 Hz to 255 MHz				
 Option B5X 	10 Hz to 510 MHz				
Resolution bandwidth (spect	rum measurement)				
Range					
– Overall	100 mHz to 3 MHz				
– Span = 1 MHz	50 Hz to 3 MHz				
– Span = 10 kHz	1 Hz to 10 kHz				
– Span = 100 Hz	100 mHz to 100 Hz				
 Window shapes 	Flat Top, Uniform, Hanr K-B 110 dB)	ning, Hamming, Gai	ussian, Blackman, Blackman-H	larris, Kaiser Bessel (K-B	70 dB, K-B 90 dB and
Analysis bandwidth (wavefor	m measurement)				
Option B25 (standard)	10 Hz to 25 MHz				
Option B40	10 Hz to 40 MHz				
Option B85	10 Hz to 85 MHz				
Option B1X	10 Hz to 160 MHz				
Option B2X	10 Hz to 255 MHz				
Option B5X	10 Hz to 510 MHz				
F frequency response (stand	lard 10 MHz IF path)				
IF frequency response (demo	dulation and FFT respon	se relative to the	center frequency)		
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/MHz) (95th percentile)	RMS (nominal)
≤ 3.6	≤ 10	± 0.20 dB	± 0.12 dB	± 0.10 dB	0.02 dB
3.6 to 26.5	≤ 10 preselected				0.23 dB
3.6 to 26.5	≤ 10 preselector off ¹	± 0.25 dB	± 0.12 dB	± 0.10 dB	0.02 dB
26.5 to 50	≤ 10 preselected				0.12 dB
26.5 to 50	≤ 10 preselected off ¹	± 0.30 dB	± 0.12 dB	± 0.10 dB	0.024 dB

IF phase linearity						
			Peak-to-peak (nominal)		RMS (nominal)	
Center freq (GHz)	Span (MHz)	Preselector	Std LO	DDS LO	Std LO	DDS LO
- ≥ 0.02, < 3.6	≤ 10	NA	0.06°	0.17°	0.012°	0.037°
- ≥3.6	≤ 10	Off ¹	0.10°	0.31°	0.022°	0.067°
- ≥ 3.6	≤ 10	On	0.11°	0.83°	0.024°	0.170°
Dynamic range (standard 10 MHz	IF path)					
Clipping-to-noise dynamic range	Excluding residua	s and spurious resp	onses			
Clipping level at mixer	Center frequency		≥ 20 MHz			
– IF gain = Low	–10 dBm		–8 dBm nominal			
– IF gain = High	–20 dBm		–17.5 dBm nominal			
Noise density at mixer at center frequency	(DANL + IF Gain effect) + 2.25 dB					
Data acquisition (standard 10 MH	z IF path)					
Time record length						
Analysis tool						
IQ analyzer	4,999,999 IQ sam	ple pairs	Waveform measurement			
Advanced tools	Data packing		89600 VSA software or fast capture			
	32-bit	64-bit				
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memor	у		
Length (time units)	Samples/Sample	ples/Sample rate (IQ pair)				
Sample rate						
IQ pairs	Span x 1.25					
ADC resolution	16 bits					

IF frequency response (standard 25 MHz IF path)

IF frequency response (standard						
IF frequency response (demodu	lation and FFT respo	nse relative to the	center frequency)			
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/MHz) (95th percentile)	RMS (nominal)	
- < 3.6	10 to ≤ 25	± 0.30 dB	± 0.12 dB	± 0.10 dB	0.05 dB	
- 3.6 to 26.5	10 to ≤ 25 preselected				0.50 dB	
- 3.6 to 26.5	10 to ≤ 25 preselector off ¹	± 0.40 dB	± 0.12 dB	± 0.10 dB	0.04 dB	
- 26.5 to 50	10 to ≤ 25 preselected				0.31 dB	
- 26.5 to 50	10 to ≤ 25 preselector off ¹	± 0.40 dB			0.02 dB	
IF phase linearity						
			Peak-to-peak (no	minal)	RMS (nominal)	
Center freq (GHz)	Span (MHz)	Preselector	Std LO	DDS LO	Std LO	DDS LO
- ≥ 0.02, < 3.6	≤ 25	NA	0.48°	0.47°	0.12°	0.12°
- ≥3.6	≤ 25	Off ¹	0.85°	1.1°	0.20°	0.28°
Dynamic range (standard 25 MH	z IF path)					
Full scale (ADC clipping)						
Default settings, signal at CF (IF gain = Low)						
– Band O	–8 dBm mixer level	nominal				
– Bands 1 through 4	–7 dBm mixer level	nominal				
High gain setting, signal at CF (IF gain = High)						
– Band O	–18 dBm mixer leve	l nominal, subject to	gain limitations			
 Bands 1 through 4 	–17 dBm mixer leve	l nominal, subject to	gain limitations			
Effect of signal frequency ≠ CF	Up to ± 3 dB nomina	al				
Data acquisition (standard 25 M	Hz IF path)					
Time record length						
Analysis tool						
IQ analyzer	4,999,999 IQ sampl	e pairs	Waveform measur	ement		
Advanced tools	Data packing		89600 VSA software or fast capture			
	32-bit	64-bit	_			
 Length (IQ sample pairs) 	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	a) 2 GB total memory			
 Length (time units) 	Samples/Sample rate (IQ pair)					
Sample rate						
IQ pairs	Span x 1.25					
ADC resolution	16 bits					

Option B40 40 MHz analysis bandwidth (Option B40 is automatically included in Option B85, B1X, B2X, or B5X)

IF frequency response (relative to center free	quency)						
Center freq. (GHz)	Span (MHz)	Preselector		Typical		RMS (non	ninal)
- ≥ 0.03, < 3.6	≤ 40	NA	± 0.4 dB	± 0.25 dB		0.05 dB	
- ≥ 3.6, ≤ 8.4	≤ 40	Off ¹	± 0.4 dB	± 0.16 dB		0.05 dB	
- > 8.4, ≤ 26.5	≤ 40	Off ¹	± 0.7 dB	± 0.20 dB		0.05 dB	
- ≥26.5, <34.4	≤ 40	Off ¹	± 0.8 dB	± 0.25 dB		0.1 dB	
- ≥34.4, < 50	≤ 40	Off ¹	± 1.0 dB	± 0.35 dB		0.1 dB	
IF phase linearity (deviation from mean phase	linearity)						
				Peak-to-p (nominal)		RMS (nor	ninal)
Center freq (GHz)	Span (MHz)	Preselector		Std LO	DDS LO	Std LO	DDS LO
- ≥ 0.03, < 3.6	≤ 40	NA		0.16°	0.5°	0.041°	0.12°
- ≥3.6	≤ 40	Off ¹		1.5°	1.24°	0.35°	0.32°
EVM (EVM measurement floor for an 802.11g	OFDM signal, using	89600 VSA softwa	re equalization, ch	annel estima	tion and dat	a EQ)	
2.4 GHz	-52.0 dB (0.25%)	nominal					
5.8 GHz with Option MPB	-49.1 dB (0.35%)	nominal					
Dynamic range (40 MHz IF path)							
SFDR (Spurious-free dynamic range)							
Signal frequency within ± 12 MHz of center	–80 dBc nominal						
Signal frequency anywhere within analysis BW							
Spurious response within ± 18 MHz of center							
	–79 dBc nominal						
Response anywhere within analysis BW	–79 dBc nominal –77 dBc nominal						
		inal)					
Response anywhere within analysis BW	–77 dBc nominal	inal) DDS LO, RF/MW		DDS LO, r	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF	–77 dBc nominal Mixer level (nomi			DDS LO, r –8 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB)	-77 dBc nominal Mixer level (nomi Std LO	DDS LO, RF/MW			nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) – Band 0	-77 dBc nominal Mixer level (nomi Std LO -8 dBm	DDS LO, RF/MW -7 dBm		-8 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) – Band 0 – Bands 1 through 4	-77 dBc nominal Mixer level (nomi Std LO -8 dBm -7 dBm -7 dBm	DDS LO, RF/MW -7 dBm	limitations	-8 dBm -7 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) – Band 0 – Bands 1 through 4 – Bands 5 through 6	-77 dBc nominal Mixer level (nomi Std LO -8 dBm -7 dBm -7 dBm	DDS LO, RF/MW -7 dBm -5.5 dBm	limitations	-8 dBm -7 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) - Band 0 - Bands 1 through 4 - Bands 5 through 6 High gain setting, signal at CF (IF gain = High) - Band 0	-77 dBc nominal Mixer level (nomi Std LO -8 dBm -7 dBm -7 dBm Mixer level (nomin	DDS LO, RF/MW -7 dBm -5.5 dBm nal), subject to gain	limitations	-8 dBm -7 dBm -11 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) - Band 0 - Bands 1 through 4 - Bands 5 through 6 High gain setting, signal at CF (IF gain = High)	-77 dBc nominal Mixer level (nomi Std LO -8 dBm -7 dBm -7 dBm Mixer level (nomir -18 dBm	DDS LO, RF/MW -7 dBm -5.5 dBm nal), subject to gain -13 dBm	limitations	-8 dBm -7 dBm -11 dBm -13 dBm	nmW		
Response anywhere within analysis BW Full scale (ADC clipping) Default setting, signal at CF (IF gain = Low: IF gain offset = 0 dB) - Band 0 - Bands 1 through 4 - Bands 5 through 6 High gain setting, signal at CF (IF gain = High) - Band 0 - Bands 1 through 2	-77 dBc nominal Mixer level (nomi Std LO -8 dBm -7 dBm -7 dBm Mixer level (nomir -18 dBm -17 dBm	DDS LO, RF/MW -7 dBm -5.5 dBm nal), subject to gain -13 dBm -9 dBm	limitations	-8 dBm -7 dBm -11 dBm -13 dBm -17 dBm	nmW		

Option B40 40 MHz analysis bandwidth

Data acquisition (40 MHz IF path)			
Time record length			
Analysis tool			
IQ analyzer	4,999,999 IQ sample p	airs	Waveform measurement
Advanced tools	D	ata packing	
	32-bit	64-bit	89600 VSA software or fast capture
Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory
Length (time units)	Samples/Sample rate	(IQ pair)	
Sample rate			
IQ pairs	Span x 1.25		
ADC resolution	12 bits		

Option B85 85 MHz or B1X 160 MHz analysis bandwidth

IF frequency response	(85 or 160 MHz IF path)				
IF frequency response	(relative to center frequ	uency)			
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
- ≥ 0.1, < 3.6	≤ 85	NA	± 0.6 dB	± 0.17 dB	0.05 dB
	≤ 140	NA	± 0.6 dB	± 0.25 dB	0.05 dB
	≤ 160	NA		± 0.2 dB (nom)	0.07 dB
– ≥ 3.6, ≤ 8.4	≤ 85	Off ¹	± 0.73 dB	± 0.2 dB	0.05 dB
	≤ 140	Off ¹	± 0.8 dB	± 0.35 dB	0.05 dB
	≤ 160	Off ¹		± 0.3 dB (nom)	0.07 dB
- > 8.4, ≤ 26.5	≤ 85	Off ¹	± 1.10 dB	± 0.50 dB	0.1 dB
	≤ 140	Off ¹	± 1.30 dB	± 0.75 dB	0.1 dB
	≤ 160	Off ¹		± 0.5 dB (nom)	0.12 dB
– ≥26.5, ≤50	≤ 85	Off ¹		± 0.45 dB	0.12 dB
	<u>≤</u> 140	Off ¹	± 1.20 dB	± 0.65 dB	0.12 dB
IF phase linearity (devi	iation from mean phase li	inearity)			
Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
≥ 0.03, < 3.6	≤ 140	NA		0.9°	0.20°
≥ 3.6	≤ 160	NA		1.7°	0.42°
	≤ 140	Off ¹		1.6°	0.39°
	≤ 160	Off ¹		2.8°	0.64°
EVM (EVM measurement floor)	Customized settings	s required, preselector	bypassed (Option MPB) abo	ove Band 0	
Case 1: 62.5 Msymbol/	s, 16 QAM signal, RRC filt	er alpha of 0.2, non-equ	alized, with approximately 7	'5 MHz occupied bandwidth	
– Band 0, 1.8 GHz	0.8% nominal				
– Band 1, 5.95 GHz	1.1% nominal				
Case 2: 104.167 Msymb	ool/s, 16 QAM signal, RRC	filter alpha of 0.35, nor	n-equalized, with approxima	tely 140 MHz occupied band	width
– Band 1, 5.95 GHz	3.0% nominal, (unequa	lized)	0.5% nominal, (equalize	d)	
B 10 15 0 011			0.00/ 1.1/ 1.	-1)	
– Band 2, 15.3 GHz	2.5% nominal, (unequal	ized)	0.6% nominal, (equalize	d)	

Option B85 85 MHz or B1X 160 MHz analysis bandwidth

Dynamic range (85 or 160 MHz IF path)				
SFDR (Spurious-free dynamic range)				
Signal frequency within ± 12 MHz of center	–75 dBc nominal			
Signal frequency anywhere within analysis BW				
 Spurious response within ± 63 MHz of center 	–74 dBc nominal			
– Response anywhere within analysis BW	–72 dBc nominal			
Full scale (ADC clipping)				
Default settings, signal at CF (IF gain = Low: IF g	gain offset = 0 dB)			
– Band O	–8 dBm mixer level nomina	al		
– Band 1 through 4	–7 dBm mixer level nomina	al		
High gain setting, signal at CF (IF gain = High)				
– Band O	–18 dBm mixer level nomir	al, subject to gain limitatior	IS	
– Band 1 through 4	–17 dBm mixer level nominal, subject to gain limitations			
Effect of signal frequency ≠ CF	Up to ± 3 dB nominal			
Data acquisition (85 or 160 MHz IF path)				
Time record length				
Analysis tool				
IQ analyzer	4,999,999 IQ sample pairs	;	Waveform measurement	
Advanced tools	Data packing			
	32-bit	64-bit	—— 89600 VSA software or fast capture	
– Length (IQ sample pairs)	536 MSa (2 ²⁹ Sa)	268 MSa (2 ²⁸ Sa)	2 GB total memory	
– Length (IQ sample pairs)	1073 MSa (2 ³⁰ Sa)	536 MSa (2 ²⁹ Sa)	4 GB total memory (Option DP4)	
 Length (time units) 	Samples/Sample rate (IQ p	pair)		
Sample rate				
IQ pairs	Span x 1.25			
ADC resolution	14 bits			

Option B2X 255 MHz analysis bandwidth (Option B2X is automatically included with Option B5X)

IF frequency response (25					
Center Freq (GHz)	Span (MHz)	Preselector	Specification	Typical	RMS (nominal)
- ≥0.4, < 3.6	≤ 255	NA	± 0.75 dB	± 0.3 dB	0.1 dB
- > 3.6, ≤ 8.4	≤ 255	Off ¹	± 0.85 dB	± 0.34 dB	0.1 dB
- > 8.4, ≤ 26.5	≤ 255	Off ¹		± 0.6 dB nominal	0.2 dB
- > 26.5	≤ 255	Off ¹		± 0.8 dB nominal	0.2 dB
IF phase linearity (255 MH	z IF path)				
 Center Freq (GHz) 	Span (MHz)	Preselector		Pk-to-pk (nominal)	RMS (nominal)
- ≥0.4, < 3.6	≤ 255	NA		3°	0.6°
- ≥ 3.6, < 26.5	≤ 255	Off ¹		2°	0.5°
- ≥26.5	≤ 255	Off ¹		4°	0.8°
Dynamic range (255 MHz	F path)				
Spurious-free dynamic ran	ge (SFDR) Anywhere within t	ne analysis BW		–78 dBc nominal	
Full scale (ADC clipping)	· ·		Mixer level		
Default setting, signal at C	- (IF gain = Low: IF gain offse	t = 0 dB)	RF/MW (Opt 508, 513, 526)	mmW (Opt 544, 550)	
– Band O			+3 dBm nominal	+2 dBm nominal	
– Bands 1 through 2			+4 dBm nominal	-6 dBm nominal	
– Bands 3 through 4			+1 dBm nominal	–9 dBm nominal	
– Bands 5 through 6				–11 dBm nominal	
High gain setting, signal at	CF (IF gain = High)		Mixer level, subject to gain li		
– Band O	<u>0</u> ,		–4 dBm nominal	+2 dBm nominal	
– Bands 1 through 2			+2.5 dBm nominal	+3 dBm nominal	
 Bands 3 through 4 			+1 dBm nominal	0 dBm nominal	
 Bands 5 through 6 				–11 dBm nominal	
Effect of signal frequency a	CF		Up to ± 4 dB nominal		
IF residual responses acros					
– Band O			Preselector off ¹		–110 dBFS nominal
- Band 1					–108 dBFS nominal
Third-order intermodulatio	n distortion (Two tones of ea	ual level. 1 MHz separatic	n, each tone –23 dB relative to fu	Ill scale (ADC clipping). IF g	
– Band O			,		–85 dBc nominal
– Bands 1 through 4			Preselector off ¹		-85 dBc nominal
– Bands 5 through 6			Preselector off ¹		-80 dBc nominal
Noise density					
Band	Frequency (GHz)		IF gain = Low	IF gain = High	
- 0	1.80		–144 dBm/Hz	–145 dBm/Hz	
- 1	6.00		–141 dBm/Hz	-141 dBm/Hz	
- 2	10.80		–140 dBm/Hz	-140 dBm/Hz	
- 3	15.15		–137 dBm/Hz	-137 dBm/Hz	
- 4	21.80		–135 dBm/Hz	–135 dBm/Hz	
- 5	30.50		–130 dBm/Hz	-130 dBm/Hz	
- 6	42.25		-130 dBm/Hz	-130 dBm/Hz	
Data acquisition (255 MHz					
Time record length	1				
IQ analyzer	4,999,999 IQ sample pairs		Waveform measurement		
Advanced tools	Data packing		89600 VSA or fast capture		
	32-bit	64-bit			
 Length (IQ sample pairs) 	1073 MSa (230 Sa)	536 MSa (229 Sa)	4 GB total memory (Option D	P4)	
Maximum IQ capture time (89600 VSA and fast capture)	Length of IQ sample pairs/s	sample rate (IQ pairs)			
Sample rate (IQ pairs)	Minimum of (1.25 x IFBW, 3	00 Msa/s)			
ADC resolution	14 bits				

Option B5X 510 MHz analysis bandwidth

IF frequency response (510 MHz IF nath)				
Center Freq (GHz)	Span (MHz)	Preselector	Specification	Typical	RMS (nominal)
– ≥ 0.6, < 3.6	<u>≤ 500</u>	NA	± 1.0 dB	± 0.41 dB	0.06 dB
- > 3.6, ≤ 8.4	≤ 500	Off ¹	± 1.25 dB	± 0.42 dB	0.3 dB
- > 8.4, ≤ 26.5	≤ 510	Off 1	± 1.25 0D	± 0.8 dB nominal	0.0 0D
- > 26.5	<u>≤ 510</u>	Off ¹		± 1.0 dB nominal	
IF phase linearity (510 l		011		± 1.0 ub nominal	
Center Freq (GHz)	Span (MHz)	Preselector		Pk-to-pk (nominal)	RMS (nominal)
– ≥ 0.4, < 3.6	≤ 510	NA		5°	1°
_ ≥ 3.6, < 26.5	≤ 510	Off		6°	1.4°
2 3.0, < 20.5 ≥ 26.5	<u>≤ 510</u> ≤ 510	Off ¹		0 7°	1.6°
Dynamic range (510 MH		UII		1	1.0
Spurious-free dynamic r		–78 dBc nominal			
 Anywhere within th 		-70 UDC HUIHIIIal			
Full scale (ADC clipping)			Mixer level		
	, t CF (IF gain = Low: IF gain offset =	= 0 dB)	RF/MW (Opt 508, 513,	mmW (Opt 544, 550)	
Seruari Serting, signara			526)	mmw (opt 044, 000)	
– Band O				–3 dBm nominal	
– Bands 1 through 2			+2 dBm nominal	–9 dBm nominal	
– Bands 3 through 4			+3 dBm nominal	–13 dBm nominal	
– Bands 5 through 6			+1 dBm nominal	–11 dBm nominal	
High gain setting, signal	at CF (IF gain = High)		Mixer level, subject to gair	n limitations	
– Band O			–3.5 dBm nominal	+2 dBm nominal	
– Bands 1 through 2			–1 dBm nominal	+3 dBm nominal	
– Bands 3 through 4			+1 dBm nominal	0 dBm nominal	
– Bands 5 through 6		÷		–11 dBm nominal	
Effect of signal frequenc	cy≠CF	Up to ± 4 dB nominal			
⁼ residual responses acr	ross the full BW				
– Band O		Preselector off ¹			–104 dBFS nominal
– Band 1					–103 dBFS nominal
Third-order intermodula	tion distortion (Two tones of equa	al level, 1 MHz separation, ea	ach tone –23 dB relative to ful	l scale (ADC clipping), IF gair	n = high)
– Band O					
 Bands 1 through 2 		Preselector off ¹			–82 dBc nominal
– Bands 3 through 4		Preselector off ¹			–80 dBc nominal
– Bands 5 through 6		Preselector off ¹			–79 dBc nominal
Noise density		·			
Band	Frequency (GHz)		IF gain = Low	IF gain = High	
- 0	1.80		–144 dBm/Hz	–144 dBm/Hz	
- 1	6.00		-140 dBm/Hz	-142 dBm/Hz	
- 2	10.80		-140 dBm/Hz	-141 dBm/Hz	
- 3	15.15		–137 dBm/Hz	-137 dBm/Hz	
- 4	21.80		–135 dBm/Hz	–135 dBm/Hz	
- 5	30.50		-130 dBm/Hz	-130 dBm/Hz	
- 6	42.25		–130 dBm/Hz	-130 dBm/Hz	
Data acquisition (510 N					
Fime record length	F				
IQ analyzer	4,999,999 IQ sample pairs		Waveform measurement		
Advanced tools	Data packing				
	32-bit	64-bit	 89600 VSA or fast capture 	9	
– Length (IQ sample					
– IFBW ≤ 255.176 Mł		1073 MSa (2 ³⁰ Sa)	536 MSa (2 ²⁹ Sa)	4 GB total memory (Optic	on DP4)
- IFBW > 255.176 MH		2,147 MSa (2 ³¹ Sa)	1073 MSa (2 ³⁰ Sa)	8 GB total memory (Optic	
	ne (89600 VSA and fast capture)	Length of IQ sample pairs			
Sample rate (IQ pairs)		zongan or recompto pallo	, sampto rato (re pairo)		
 – IFBW ≤ 255.176 Mł 	47	Minimum of (1.25 × IFBW,	300 MSa/s)		
- IFBW > 255.176 MF		Minimum of (1.25 × IFBW,			
ADC resolution	IL	14 bits	000 1000/3/		
-DO 1690(ULIUII		IH UILS			

1. MPB (microwave preselector bypass) is enabled. All UXA ship with MPB as a standard feature.

Real-time spectrum analyzer (RTSA)¹

Option RT1 or RT2

Real-time analysis

Real-time analysis bandwidth		
– Option RT1	Up to 509.47 MHz	Analysis BW option determines the max real-time bandwidth
– Option RT2	Up to 509.47 MHz	Analysis BW option determines the max real-time bandwidth
– Option DUA	Up to 2 x 255 MHz at same center frequency	Requires Option B5X
Minimum detectable signal duration w	ith > 60 dB	
– Option B85	11.42 ns	
– Option B1X	5.0 ns	
 Option B2X or B5X 	3.33 ns	
Minimum signal duration with 100% pr	obability of intercept (POI) at full amplitude accuracy	For Frequency Mask Triggering (FMT)
– Option RT1	17.3 µs	Signal is at mask level
– Option RT2	3.57 μs	Signal is at mask level
Minimum acquisition time	104 µs	
FFT rate	292,969/s	

Option RTS

Real-time I/Q data streaming ³		
Output stream resolution	16-bit I + jQ	
IQ streaming bandwidth	Up to 255 MHz	
Electrical interface	LVDS	
Sample rate	Varies continuously based on RTSA span setting	
Max IQ streaming bandwidth and sample rate		
– B1X	160 MHz	200 Msamples/s
– B2X or B5X	255 MHz	300 Msamples/s
Supported data recorder	X-COM Systems IQC5255B	
– Capture time	< 3 hours at 255 MHz bandwidth	
– Data tagging	Event markers, IRIG-B GPS	

1. For additional RTSA specifications, please refer to Option RT1/RT2 Chapter in the PXA Signal Analyzer specifications guide.

StM = "Signal-to-Mask".
 Use with X-COM Systems IQC5255B data recorder to capture rare events and play back at RF using integrated control software on the PXA.

